

Denoising in Monte Carlo Photon Transport Simulations Using GPU-accelerated Adaptive Non-Local Mean Filter

Motivation

Computational Optics & Translational Imaging Lab

Yaoshen Yuan¹, Leiming Yu¹ and Qianqian Fang² ¹ Department of Electrical and Computer Engineering, and ² Department of Bioengineering Northeastern University, Boston, Massachusetts, MA 02115, USA

http://fanglab.org

Graphic Processing Units (GPU) has been used in MC algorithm to accelerate run-time from hours to seconds.

Inherent stochastic noise can be reduced by launching more photons whereas this results in slower computation even with GPU acceleration.

4. An adaptive non-local means (ANLM) can be applied to MC images due to its superior edge-preservation and effective noise reduction.

- 5. Purpose: To improve SNR of low-photon MC images using image denoising; equivalently, to accelerate MC simulations.
 - 6. With our optimized GPU-accelerated ANLM filter, we are able to achieve SNRs comparable to those generated with nearly 10-fold photons. The GPU ARLM filter was also accelerated by a 3x-6x compared to published works [1].
 - 7. Will be released as part of MCX: http://mcx.space/

Introduction

Challenges of Monte Carlo simulation

- ➤ Monte Carlo (MC) simulation is more accurate with more photons.
- > Run-time becomes longer as the photon number increases even with GPU acceleration.

 10^6 vs. 10^7 photons using MC simulation

Noise characteristics in MC images

- ➤ MC noise presents as shot-noise
- > Decreases with more simulated photons
- > Spatially changing due to fewer photons distal to the source

What is Adaptive Non-local Mean (ANLM) filter and why

Pros:

- ➤ Superior edge-preservation
- > Exceptional noise suppression
- ➤ Adaptive to spatial-variant noise
- ➤ Parallelizable

Cons:

➤ Very high time complexity

The filtered value is [1]:

$$u_i = \sum_{x_j \in V_i} w(x_i, x_j) u_j$$

The weight is computed:

$$w(x_i, x_j) = \frac{1}{Z_i} \exp\left(\frac{\left|\left|u(D_i) - u(D_j)\right|\right|_2^2}{(h)^2}\right)$$

Previous work [2]

- **GPU-accelerated ANLM**
- II. Filtering on MR images
- III. Multi-component (T1, T2 and PD)
- IV. Multiple GPUs

h: adaptive parameter

Our work

- Support single precision
- Selection rule for non-local patch Optimized
- memory config. 3D search area
- for computing **h**

BAXUS

Bx+2a

3D block

GPU memory configuration and optimization

- ➤ Global memory: large but slow > Texture memory: read only and beneficial when fetching data
- from adjacent memory address > Shared memory: faster but only

Optimization 4: Combine two filtering

without calling kernel twice.

Algorithm 1: GPU memory configuration for ANLM

Input: noisy image Ω_i , search radius v, patch radius f**Output:** Denoised image Ω_o

- **1**: Load Ω_i and compute mean, var and $R = \Omega_i$ mean for filtering computation.
- **2**: Load Ω_i , mean, var and R into texture memory
- **3**: Load Ω_i and R into shared memory. In each block, the size of shared memory is
- $2 \times (B_x + 2(f + v))(B_v + 2(f + v))(B_z + 2(f + v)).$
- **4**: The denoised image Ω_o is save in the global memory.

Experiments

	μ_a (mm ⁻¹)	$\mu_s(mm^{-1})$	\boldsymbol{g}	\boldsymbol{n}
homogeneous	0.005	1	0	1.37
absorbing	0.025	1	0	1.37
refractive	0.005	1	0	6.85

Experiment setup

Stochastic noise

- \geq 100 \times 100 \times 100 homogeneous cube (1 mm/voxel)
- ➤ Pencil beam source is placed on coordinate (50,50,50) with orientation (0,0,1)
- > Absorbing and refractive inclusion are added (see table)
- \triangleright Patch radius for 1st filtering: $f_1 = 1$, Patch radius for 2nd filtering $f_2 = 2$, search radius: v = 3.

Hardware

- ➤ CPU: Intel® Core™ i7-6700K CPU @ 4.00GHz
- ➤ GPU: NVIDIA GeForce GTX 980 Ti

homogeneous medium (0,0,1) pencil beam inclusion 100 (50,50,50)Fig. 1 a $40 \times 40 \times 40$ inclusion in cube

 $SNR(dB) = 20\log_{10}\frac{\mu}{\sigma}$

where μ and σ^2 are mean and variance.

Results

Metric

➤ Benchmark 1~3: 3 types of cube (see Experiments)

- ➤ **B**: Baseline from Granata et al [2]
- **> O1~O4:** Optimization 1 to 4

count by 10-fold.

Bar chart (sub-band mixing excluded): 2 1000

- 1. Kernel time (red bar) is improved with 01 to 04
- 2. CPU overhead is reduced with O3 (blue)

Table (sub-band mixing included):

- 1. 5x~6x faster than CPU filter in [1]
- 2. Overall run-time of (GPU ANLM+ MC)<MC when # photon> 10^7 (bold)

	Homogeneous (sec)			Absorbing inclusion (sec)			Refractive inclusion (sec)					
		GPU-	CPU-		GPU-	CPU-		GPU-	CPU-			
Photon#	MCX	ANLM	ANLM	MCX	ANLM	ANLM	MCX	ANLM	ANLM			
10 ⁵	0.1837	1.0084	5.8466	0.1824	0.9192	4.2923	0.1720	1.2762	3.9410			
10 ⁶	0.3359	1.1332	6.5333	0.3313	1.0307	5.4646	0.4390	0.9563	5.7687			
10 ⁷	1.1746	0.8224	6.6445	1.1819	1.2076	5.9047	2.1839	0.9379	6.5319			
10 ⁸	8.3531	0.9441	6.1433	8.3537	1.1286	5.6366	17.7453	0.8432	6.3297			

Conclusions

We optimized the GPU-ANLM filter to achieve 5x~6x speedup (2 filtering+sub-band mixing process) compared to multi-thread CPU version [1] and 3x~4x speedup (2 filtering process) compared to the architecture proposed in [2]. To achieve shorter overall run-time, the application of GPU ANLM filter on MC simulation will have a speed benefit for photon number above $10^7.$

References

- [1] Manjón J V, Coupé P, Martí-Bonmatí L, et al. Adaptive non-local means denoising of MR images with spatially varying noise levels[J]. Journal of Magnetic Resonance Imaging, 2010, 31(1): 192-203.
- [2] Granata D, Amato U, Alfano B. MRI denoising by nonlocal means on multi-GPU[J]. Journal of Real-Time Image Processing, 2016: 1-11.

Acknowledgement

This research is supported by National Institutes of Health (NIH) grants # R01-GM114365 and R01-CA204443